The antibacterial effects of lasers in endodontics

Author_Selma Camargo

Endodontic infection

The success of endodontic treatment reaches values between 85 to 97 per cent. Adequate treatment protocols, knowledge and infection control are the basic components to achieve such values (Fig 1). It is well known that apical periodontitis is caused by the communication of root-canal microorganisms and their by-products with the surrounding periodontal structures. Exposure of dental pulp directly to the oral cavity, or via accessory canals, open dentinal tubules or periodontal pockets, are the most probable routes of the endodontic infection.1,2

Clinically, apical periodontitis is not evident as long as the necrotic tissue is not infected with microorganisms.4-6 There are up to 40 isolated species of bacteria present in the root canal. Cocci, rods, filaments, spirochetes, anaerobic and facultative anaerobic are frequently identified in primary infection, fungus can also be isolated.5,7 Endodontic microbiota can be found suspended in the main root canal, adhered to the canal walls and deep in the dentinal tubules at a depth of up to 300μm (Fig 2). The absence of cementum dramatically increases bacteria penetration into dentinal tubules.8-11

It has been shown that bacteria can also been found outside the root-canal system, located at the apical cementum and as an external biofilm on the apex.12-15 Following conventional endodontic treatment, 15 to 20 per cent of non-vital teeth with apical periodontitis fail.16-18 The presence of bacteria after the decontamination phase or the inability to seal root canal after treatment are reasons for failure.2 The remaining contamination in endodontically treated teeth is able to maintain the infectious disease process in the periapical tissue.

Retreatments are the first choice in failed root canals. The microbiota found in persistent infections differs from that in primary infection (Fig 3). Facultative anaerobic gram positive (G+) and negative (G-) microorganisms and fungus are easily found.19-22 Special attention is given to Enterococcus faecalis, a resistant facultative anaerobic G+ cocci, identified in a much higher incidence in failed root canals.22-25 The importance of bacterial control plays a significant role in endodontic success. Adequate and effective disinfection of the root-canal system is necessary. Based on that, all efforts must be done in order to achieve this result.

Endodontic therapy

The bacterial flora of the root canal must be actively eliminated by a combination of debridement and antimicrobial chemical treatment. Mechanical instrumentation eliminates more than 90 per cent of the microbial amount.26 An important point of note is the adequate shaping of the root canal. Evaluating the antibacterial efficacy of mechanical preparation itself, Dalton et al.27 concluded that instrumentation to an apical size of #25 resulted in 20 per cent of canals free of cultivable bacteria, when a #35 size was made, 60 per cent showed negative results.

Irrigant solution has been associated with mechanical instrumentation to facilitate an instrument's cutting efficiency, remove debris and the smear layer, dissolve organic matter, clean inaccessible areas and act against microorganisms. Sodium hypochlorite is the most common irrigant used in endodontics.28 It has an excellent cleansing ability, dissolves necrotic tissue, has a potential antibacterial effect and, depending on the concentration, is well tolerated by biological tissues. When added to mechanical instrumentation,
The regime that shows plaque bacteria no mercy

Brushing and flossing/interdental cleaning are pivotal to oral hygiene. They displace and dislodge dental plaque bacteria that can cause gingivitis and periodontal disease. But bacteria from other areas of the mouth can recolonize on teeth quickly.

Using LISTERINE® after mechanical cleaning destroys oral bacteria effectively, killing up to 97% in vivo. This lowers the bacterial burden in the mouth and in plaque that reforms. And when used for 6 months, LISTERINE® can reduce plaque levels by up to 52% more than brushing and flossing alone. In addition, LISTERINE® Total Care products offer various levels of fluoride and other benefits to suit patients' needs.

So recommend LISTERINE® as the final step in your patient's daily regime, to finish the job started by mechanical cleaning.

References:
2. Data on file FCLGBP0023+28, McNeil PPC.

Finish the job. Finish off with Listerine.
Lasers in endodontics

Lasers were introduced in endodontics as a complementary step to increase antibacterial efforts in conventional treatments. The antibacterial action of Nd:YAG, diodes, Er:YAG and photo activated disinfection (PAD) have been explored by a number of investigators. In the following section, each laser is evaluated with the aim of selecting an adequate protocol that will result in a high probability of success in teeth with apical periodontitis.

Nd:YAG laser

The Nd:YAG laser was one of the first lasers tested in endodontics. It is a solid-state laser. The active medium is usually YAG–yittrium aluminium garnet (Y2Al5O12) where some Y3+ are substituted for Nd3+. It is a four-level energy system operating in a continuous or pulsed mode. It emits a 1064nm infrared wavelength. Thus, this laser needs a guide light for clinical application. Flexible fibres with a diameter between 200μm and 400μm are used as delivery systems. It can be used intra canal, in contact mode (Fig 4).

One of the major problems for intra-canal...
Introducing the Laser-Lok® 3.0 implant

Laser-Lok 3.0 is the first 3mm implant that incorporates Laser-Lok technology to create a biologic seal and maintain crestal bone on the implant collar\(^1\). Designed specifically for limited spaces in the aesthetic zone, the Laser-Lok 3.0 comes with a broad array of prosthetic options making it the perfect choice for high profile cases.

- Two-piece 3mm design offers restorative flexibility in narrow spaces
- Implant design is more than 20% stronger than competitor implant\(^2\)
- 3mm threadform shown to be effective when immediately loaded\(^3\)
- Laser-Lok microchannels create a physical connective tissue attachment (unlike Sharpey fibers) \(^4\)

For more information, contact BioHorizons Customer Care: +44 (0)1344 752560 or visit us online at www.biohorizons.com

2. Implant strength & fatigue testing done in accordance with ISO standard 14801.
laser irradiation is the increase of temperature at the external surface of the root. When laser light reaches a tissue, a thermal effect occurs. The heat is directly associated to energy used, time and irradiation mode. An increase in temperature levels over 10 degrees Celsius per one minute can cause damage to periodontal tissues, such as necrosis and anquilose.

Lan (1999) evaluated in vitro, the temperature increase on the external surface of the root after irradiation with a Nd:YAG laser under the following parameters of energy: 50mJ, 80mJ and 100mJ at 10, 20 and 30 pulses per second. The increase of temperature was less than 10 degrees. The same results were obtained from Bachman et al. (2000), Kimura et al. (1999), Gutknecht et al. (2008). In contrast to the external surface, intra-canal temperature rises dramatically at the apical area, promoting an effective action against bacteria contamination. For the Nd:YAG laser, 1.5 watts and 15Hz, are safe parameters of energy for temperature and morphological changes.

The primary use of the Nd:YAG laser in endodontics is focused on elimination of microorganisms in the root canal system. Rooney et al. (1994) evaluated the antibacterial effect of Nd:YAG lasers in vitro. Bacterial reduction was obtained considering energy parameters. Researchers developed different in vitro models simulating the organisms expected in non-vital, contaminated teeth. Nd:YAG irradiation was effective for Baccilus stearothermophilus, Streptococcus faecalis, Escherichia coli, Streptococcus mutans, Streptococcus sanguis, Prevotella intermedia and a specific microorganism resistant to conventional endodontic treatment, Enterococcus faecalis. Nd:YAG has an antibacterial effect in dentin at a depth of 1000μm.

Histological models were also developed in order to evaluate periapical tissue response after intracanal Nd:YAG laser irradiation. Suda et al. (1996) proved in dog models that Nd:YAG irradiation that 100mJ/30pps (pulses per second) during 30 seconds was safe to surrounding root tissues. Maresca et al. (1996), using human teeth indicated for apical surgery, confirmed Suda et al. and Ianamoto et al. (1998) results. Koba et al. (1999) analysed histopathological inflammatory response after Nd:YAG irradiation in dogs using one watt and two watts. Results showed significant inflammatory reduction in four and eight weeks compared to the non-irradiated group.

Clinical reports published in the literature confirm the benefits of intra-canal Nd:YAG irradiation. In 1993, Eduardo et al. published a successfully clinical case that associated conventional endodontic treatment with Nd:YAG irradiation for retreatment, apical periodontitis, acute abscess and perforation. Clinical and radiographic follow up showed complete healing after six months.

Similar results were shown by Camargo et al. (1998). Gutknecht et al. (1996) reported a significant improvement in healing of laser-treated infected canals, when compared to non-irradiated cases.

Camargo et al. (2002) compared in vivo the antibacterial effects of conventional endodontic treatment and conventional protocol associated to the Nd:YAG laser. Teeth with apical radiolucency, no symptoms and necrotic pulps were selected and divided into two groups: conventional treatment and laser irradiated. Microbiological samples were taken before canal instrumentation, after canal preparation and/or laser irradiation and one week after treatment. Results showed a significant antibacterial effect in the laser group compared to the standard protocol. When no other bactericidal agent was used, it is assumed that the Nd:YAG laser played a specific role in bacterial reduction for endodontic treatment in patients.

Diodes

The diode laser is a solid-state semiconductor laser that uses a combination of gallium, arsenide, aluminum and/or indium as the active medium. The available wavelength for dental use ranges between 800 and 1064nm that emits in continuous and gated pulsed mode using an optical fibre as the delivery system (Fig 6). Diode lasers have gained increasing importance in dentistry due to their compactness and affordable cost. A combination of smear layer removal, bacterial reduction
and less apical leakage brings importance to this system and makes it viable for endodontic treatment. The principal laser action is photothermal.

The thermal effect on tissue depends on the irradiation mode and settings. Wang et al. (2005)59 irradiated root canals in vitro and demonstrated a maximum temperature increase of 8.1 degrees Celsius using five watt for seven seconds. Similar results were obtained by da Costa Ribeiro.60 Gutknecht et al. (2005)61 evaluated intra-canal diode irradiation with an output set of 1.5 watts observed a temperature increase in the external surface of the root of seven degrees Celsius with 980nm of diode irradiation at a power setting of 2.5 watts at a continuous and chopped mode and demonstrated that the temperature increase never exceeded 47 degrees Celsius, which is considered safe for periodontal structures.41

Clean intra-canal dentin surfaces with closed dentinal tubules, indicating melting and recrystallisation, were morphological changes observed at the apical portion of the root after intra-canal diode irradiation.62 In general, near infrared wavelengths, such as 1064nm and 980nm, promote fusion and recrystallization on the dentin surface, closing dentinal tubules.

The apparent consensus is that diode laser irradiation has a potential antibacterial effect. In most cases, the effect is directly related to the amount of energy delivered. In a comparative study designed by Gutknecht et al. (1997)63, an 810nm diode was able to reduce bacteria contamination up to 88.38 per cent with a distal output of 0.6 watts in CW mode. A 980nm diode laser has an efficient antibacterial effect in root canals contaminated with Enterococcus faecalis at an average between 77 to 97 percent. Energy outputs of 1.7 watts, 2.3 watts and 2.8 watts were tested. Efficiency was directly related to the amount of energy and dentin thickness.64

Er:YAG laser

Er:YAG lasers are solid-state lasers whose laser medium is erbium-doped yttrium aluminium garnet (Er:Y3Al5O12). Er:YAG lasers typically emit light with a wavelength of 2940nm, which is infrared light. Unlike Nd:YAG lasers, the output of an Er:YAG laser is strongly absorbed by water because of atomic resonances. The Er:YAG wavelength is well absorbed by hard dental tissue. This laser was approved for dental procedures in 1997. Smear layer removal, canal preparation and apicoectomy are the indications for endodontics (Fig 7).

The morphology of dentinal surface irradiated with an Er:YAG laser is characterized by clean areas showing opened dentinal tubules free of smear layer in a globular surface. The effects on bacterial reduction by Er:YAG was observed by Moritz et al. (1999)65 Stabhols et al. (2003)66 described a new endodontic tip that can be used with an Er:YAG laser system. The tip allows lateral emission of the radiation rather than direct emission through a single opening at the far end. It emits through a spiral tip located along the length of the tip. In order to examine the efficacy of the spiral tip in removing smear layer, Stabholz et al. (2003)66 showed cleaned intra-canal dentin walls free of smear layer and debris under SEM evaluation.

Photo activated disinfection (PAD)

Another method of disinfection in endodontics is also available. Photo activated disinfection (PAD) is based on the principle that photo-activatable substances that bind to the target cells and are activated by light of suitable wavelength. Free radicals are formed, producing a toxic effect to bacteria. Toluidine blue and methylene blue are examples of photo-activatable substances. Toluidine chloride is able to kill most of the existing bacteria. In vitro studies, PAD has an effective action against photosensitive bacteria such as E. faecalis, Fusobacterium nucleatum,Prevotella intermedia, Peptostreptococcus micros and Actinomyctemcomitans.67,68 On the other hand Souza et al. (2010)69, evaluating PAD antibacterial effects as a supplement to instrumentation / irrigation in infected canals with E faecalis, did not prove significant effect regards to intra-canal disinfection. Further adjustments in the PAD protocols and comparative research models may be required to before clinical usage recommendations.

Discussion and conclusion

There are good reasons to focus the treatment of non-vital contaminated teeth upon the destruction of bacteria in the root canal. The chances for a favourable outcome of the treatment are significantly higher if the canal is free from bacteria when it is obturated. If, on the other hand, bacteria persist at the time of root filling, there is a higher risk of failure treatment. Therefore, the prime objective of treatment is to achieve the complete elimination of all bacteria from the root canal system.2,31

Today, the potential antibacterial effect of laser irradiation associated with the bio-stimulation action and accelerated healing process is well known. Research has supported the improvement of end-
Special lasers in endodontics II

An endodontic laser therapeutic plan brings benefits to conventional treatment, such as minimal apical leakage, effective action against resistant microorganisms and on external apical biofilm, and an increase in periapical tissue repair. Based on that, laser procedures have been incorporated into conventional therapeutic concepts to improve endodontic therapy (Fig 8).

Clinical studies have shown the benefits of an endo-laser protocol in apical periodontitis treatment. For endodontic treatment, laser protocol is a combination of standard treatment strategies associating cleaning and shaping the root canal with a minimal adequate shape up to #35, irrigant solutions with antibacterial properties and intra-canal laser irradiation using controlled parameters of energy. Ideal sealing of the root canal and adequate coronal restoration are needed for an optimal result.

In practice, little additional time is required for laser treatment. Irradiation technique is simple once flexible optical fibers of 200μm in diameter are used. The fibre can easily reach the apical third of the root canal, even in curved molars (Fig 9). The released laser energy has an effect in dentin layers and beyond the apex in the periapical region. The laser’s effect is applicable in inaccessible areas, such as external biofilm adhered at the root apex.

Irradiation technique must follow basic principles. A humid root canal is required and rotary movements from the coronal portion to the apex should be carried out, as well as scanning the root canal walls in contact mode (Fig 10). The power settings and irradiation mode depend on one’s choice of a specific wavelength.

Nd:YAG, diodes in different wavelength emissions, Er:YAG, Er:Cr:YSGG and low-power lasers can be used for different procedures with acceptable results. Laser technology in dentistry is a reality. The development of specific delivery systems and the evolution of lasers combined with a better understanding of laser-tissue interaction increase the opportunities and indications in the endodontic field.

References
R4 Practice Management Software
GIVES YOU MORE
AND KEEPS ON GIVING
CONSTANTLY IMPROVING
CONSTANTLY DEVELOPING
CONSTANTLY DELIVERING

More features, More benefits, More time,
More support, all of which can help you achieve
More patients and More profits

...and there’s still more to come

For more information or to place an order
please call 0800 169 9692
email sales.uk.csd@carestream.com
or visit www.carestreamdental.co.uk

Features of R4
R4 Mobile
Direct link to PIN pad
Patient Check-in Kiosk
Care Pathways
Communicator
Steritrak
E-Forms
Patient Journey
On-line Appointment Booking
Text Message and Email reminders
Clinical Notes
Appointment Book
Digital X-Ray
Managed Service
Practice Accounts

Carestream Dental
© Carestream Dental Ltd., 2011.

I.

Special lasers in endodontics II

Fig. 10. Intra-canal laser irradiation, technique.

Dr. Selma Camargo, DDS, Phd
PhD in endodontics, University of São Paulo, Brazil. Specialist and masters, University of São Paulo, Brazil. Professor of endodontics and general dentistry clinic. University of Cidade de São Paulo, Brazil. Laser in dentistry unit, University of Cidade de São Paulo, Brazil. Research in endodontics (master’s) at University of British Columbia, Vancouver Canada. Research in endodontics (PhD), University of Oslo, Norway. University of São Paulo, Brazil. Rua Pinto Gonçalves, 85/54 Perdizes São Paulo, SP Brazil 05005–010. selmacris@me.com